NEXT
Class 9 NCERT Solutions Chapter 6 Maths
Chapter 6: Lines and Angles
TEXTBOOK’S EXERCISE – 6.2
1. In the figure, find the values of x and y and then show that AB || CD.

Sol. In the given figure, a transversal intersects two lines AB and CD such that
x + 50° = 180° [Linear pair axiom]
⇒ x = 180° – 50° = 130°
y = 130° [Vertically opposite angles]
Therefore, ∠x = ∠y = 130° [Alternate angles]
∴ AB || CD [Converse of alternate angles axiom] Proved.
2. In the figure, if AB || CD, CD || EF and y : z = 3 : 7, find x.

Sol. In the given figure, AB || CD, CD || EF and y : z = 3 : 7.
Let y = 3a and z = 7a
∠DHI = y [Vertically opposite angles]
∠DHI + ∠FIH = 180° [Interior angles on the same side of the transversal]
⇒ y + z = 180°.
⇒ 3a + 7a = 180°
⇒ 10a = 180° ⇒ a = 18°
∴ y = 3 × 18° = 54° and z = 18° × 7 = 126°
Also, x + y = 180°
⇒ x + 54° = 180°
∴ x = 180° – 54° = 126°
Hence, x = 126°.
Sol. In the given figure, AB || CD, EF ⊥ CD and ∠GED = 126°
∠AGE = ∠GED [Alternate angles]
∴ ∠AGE = 126°
Now, ∠GEF = ∠GED – ∠DEF
= 126° – 90° = 36° [Since ∠DEF = 90°]
Also, ∠AGE + ∠FGE = 180° [Linear pair axiom]
⇒ 126° + FGE = 180°
⇒ ∠FGE = 180° – 126° = 54°.
4. In the figure, if PQ || ST, ∠PQR = 110° and ∠ RST = 130°, find ∠QRS.

Sol. Extend PQ to Y and draw LM || ST through R.

∠TSX = ∠QXS [Alternate angles]
⇒ ∠QXS = 130°
∠QXS + ∠RXQ = 180° [Linear pair axiom]
⇒ ∠RXQ = 180° – 130° = 50° …(1)
∠PQR = ∠QRM [Alternate angles]
⇒ ∠QRM = 110° …(2)
∠RXQ = ∠XRM [Alternate angles]
⇒ ∠XRM = 50° [By (1)]
∠QRS = ∠QRM – ∠XRM
= 110° – 50° = 60°
5. In the figure, if PT ⊥ PS, PQ || SR, ∠SQR = 28° and ∠QRT = 65°, then find the values of x and y.

Sol. In the given figure, lines PQ ⊥ PS, PQ || SR,
∠SQR = 28° and ∠QRT = 65°
∠PQR = ∠QRT [Alternate angles]
⇒ x + 28° = 65°
⇒ x = 65° – 28° = 37°
In ΔPQS,
∠SPQ + ∠PQS + ∠QSP = 180° [Angle sum property of a triangle]
⇒ 90° + 37° + y = 180° [Since PQ ⊥ PS, ∠PQS = x = 37° and ∠QSP = y]
⇒ 127° + y = 180°.
⇒ y = 180° – 127° = 53°
Hence, x = 37° and y = 53°
6. In the figure, the side QR of ΔPQR is produced to a point S. If the bisectors of ∠ PQR and ∠ PRS meet at point T, then prove that ∠ QTR = 1/2 ∠ QPR.

Sol. Exterior ∠PRS = ∠PQR + ∠QPR [Exterior angle property]
Therefore, 1/2 ∠PRS = 1/2 ∠PQR + 1/2 ∠QPR
⇒ ∠TRS = ∠TQR + 1/2 ∠QPR …(i)
But in ΔQTR,
Exterior ∠TRS = ∠TQR + ∠QTR …(ii) [Exterior angle property]
Therefore, from (i) and (ii)
∠TQR + ∠QTR = ∠TQR + 1/2 ∠QPR